Resonant solutions for elliptic systems with Neumann boundary conditions
نویسندگان
چکیده
We consider a sublinear perturbation of an elliptic eigenvalue system with homogeneous Neumann boundary conditions. For oscillatory nonlinearities and using bifurcation from infinity, we prove the existence unbounded sequence turning points resonant solutions.
 See also https://ejde.math.txstate.edu/special/02/d1/abstr.html
منابع مشابه
Nonconstant radial positive solutions of elliptic systems with Neumann boundary conditions
Article history: Received 3 February 2016 Available online 24 May 2016 Submitted by J. Shi
متن کاملINFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.
متن کاملAnalytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations
In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...
متن کاملNew conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms
This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...
متن کاملNoncoercive convection-diffusion elliptic problems with Neumann boundary conditions
We study the existence and uniqueness of solutions of the convective-diffusive elliptic equation −div(D∇u) + div(V u) = f posed in a bounded domain Ω ⊂ RN , with pure Neumann boundary conditions D∇u · n = (V · n)u on ∂Ω. Under the assumption that V ∈ Lp(Ω)N with p = N if N ≥ 3 (resp. p > 2 if N = 2), we prove that the problem has a solution u ∈ H1(Ω) if ∫ Ω f dx = 0, and also that the kernel is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Differential Equations
سال: 2023
ISSN: ['1072-6691']
DOI: https://doi.org/10.58997/ejde.sp.02.d1